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A Safe Longitudinal Control for Adaptive Cruise
Control and Stop-and-Go Scenarios

John-Jairo Martinez and Carlos Canudas-de-Wit

Abstract— In this paper, we propose a novel reference model-
based control approach for automotive longitudinal control. An
important property of this proposed structure concerns the
fact that the control design could be meet independent of the
model design, permitting the additional control loop only be
responsible of the model-matching between the actual system and
the desired reference dynamics. The reference model is non-linear
and provides dynamic solutions consistent with some defined
safety and comfort constraints. Some model simulations together
with some experimental results are presented and discussed.

Index Terms— Automotive, longitudinal control, reference
model, adaptive cruise control, stop-and-go.

I. INTRODUCTION

ADAPTIVE cruise control (ACC), and stop-and-go
scenarios are examples of problems related with

longitudinal control. The former concerns the inter-distance
control in highways where the vehicle velocity mainly
remains constant, whereas the latter deals with the vehicle
circulating in towns with frequent stops and accelerations.
In both situations, goals of safety and comfort most often
oppose each other [16].

In most of the reported works, these two categories of
problems are treated separately with little regard to the
comfort specifications. Indeed, the behavior of the inter-
distance dynamics often results from a particular feedback
loop, which makes difficult to ensure a priori computable
bounds on the inter-distance and the vehicle acceleration and
its time-derivatives. It is also suited that external factors such
as road characteristics, weather conditions, and traffic load
(among others), must be considered while defying the safety
and the comfort metrics. This last point is naturally reinforced
by the new safety programs including vehicles/infrastructure
communication [18],[19].

Next we attempts to explain the main ideas about safety and
comfort criteria used in automotive longitudinal control. More
details and models could be found in [12] and [14].

A. Safe inter-distance policies.

During the last decades the well known “safe inter-distance”
has been calculated as a minimal distance to avoid a collision if
the preceding vehicle were to act “unpredictably”. In fact, the
safe inter-distance is calculated from the Newtonian motion
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Fig. 1. Comparison of different distance policies: Constant time-headway
rule (2 seconds), Average distances in a parisian freeway (source [17]), and
the proposed reference distance policy.

equation, permitting to obtain the necessary distance to full
stop without collision, some examples are founded in [1], [12],
[13], where the safe distance is calculated as

dsafe = λ1(v2
f − v2

l ) + λ2vf + λ3, (1)

for some constants λ1, λ2, and λ3. The terms vf and vl

correspond to the follower and leader velocities, respectively.
The first term is related to the relative braking distance
between two vehicles; the second term take into account the
system reaction time λ2, the third term λ3 corresponds to the
minimal constant distance to respect.

Part of the attractiveness of this model is that it may
be calibrated using common sense assumptions about driver
behavior, needing (in the most part) only the maximal braking
rates that a driver will wish to use, and predicts other drivers
will use, to allow it to fully function. However, this model
correspond to a stationary solution of a motion equation,
taking a non-exogen input (i.e. it depends of the own speed),
and assuming constant and similar decelerations for all the
implied vehicles.

Although it produces acceptable results, for example, if
one examines the “safety distance” concept, we see that this
model is not a totally valid starting point, as in practice,
during a urgence maneuver, the vehicles could present so large
transitory relative velocity, and then the actual inter-distance
tends to decrease abruptly. This is opposed to the reference (1),
which indiques that the safe distance should be increased, and
by consequence, this safe distance is always violated during a
hard stop scenario. Thus, this model could be useful to dictate
at what moment the braking maneuver could be started, but it
does not supply any braking strategy.

Figure 1 illustrates three different distance policies. One
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of these corresponds to the well known two seconds rule,
that drives are forced to respect. In fact, this rule attempts
to respect a distance proportional to the human reaction time
(approx. 1.5-2 seconds). Thus, starting from (1), this distance
is calculated as

dsafe = λ2vf + λ3. (2)

This rule is often called the Constant Time-headway rule,
where the constant λ2 stands for the Time-headway.

Many works use this policy as a safe distance, with a little
regard in the original safe distance concept. Nevertheless,
some variations of this model try to perform other require-
ments, for example [2] proposes a control strategy where the
safety inter-distance is computed as a non-linear function of
the speed, (i.e. the Time-headway is a function of the speed),
in order to guarantee string stability in the platoon problem.

Returning to the figure 1, we can notice that the current
driver behavior (almost in a parisian freeway) is very close to
a Constant Time-headway rule. Here, the drivers keep a Time-
headway inferior of the usual human reaction time (i.e. less
than one second) which is potentially dangerous.

On the other hand, figure 1 also illustrates the proposed
reference distance policy, that contrarily to the precedent
models, it is obtained from an exogen dynamical motion
equation. This fact allows to calculated explicitly the bounds
of the model solutions which are obtained through suitable
integral curves. Thus, the proposed reference model does not
suffer the problems discussed above, that is, we can guarantee
safety and comfort requirements in an explicitly way. All this
will be discussed in the Section III.

B. Comfort criteria.

Studies on comfort criteria are scarce. However, we can
find some works that try to ensure comfort by imitating the
human behavior. For example, [3] presents an ACC system for
low speed motion, where the desired acceleration was obtained
from an estimated model using data of a real driver’s behavior.
On the other hand, [10] uses human perception theory in order
to obtain an acceptable inter-distance reference. The problem
here is that reproducing such as behavior may not necessarily
lead to safe operation. Therefore, human-based methods may
perform over heuristic approaches [19].

In general, passenger comfort in public ground transporta-
tion is determined by the changes in motion felt in all direc-
tions, as well as by the other environmental effects. Typically,
acceleration magnitude is taken as a comfort metric, however
in [7] comfort due to the motion changes in a vehicle’s
longitudinal direction (the “jerk”) has been used instead1. So,
the jerk is important when evaluating the discomfort caused
to the passengers in a vehicle. For example, when designing
a train and elevators, engineers will typically be required to
keep the jerk less than 2 m/s3 for passenger comfort. Then, an
accepted criteria is that bounded longitudinal accelerations and
jerks can guarantee a certain degree of comfort in longitudinal

1the acceleration’s time-derivative is the best metric to reflect a human
comfort criteria
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Fig. 2. The inter-distance control scheme.

control, especially in Stop-and-go scenarios. This aspect will
be taken into account during the reference-model design.

C. Paper contribution

In this paper, we propose a novel reference model-based
control approach for automotive longitudinal control. The
proposed structure is intended to allow the controller and
the reference model be defined independently. The proposed
reference model is nonlinear and provides dynamic solutions
which a priori verify safety constraints. The model is based
on physical laws of compliant contact and has the particularity
that its solutions can be described by explicit integral curves.
This allows to explicitly characterize the set of initial
condition for which the safety constraints can be met. An
additional control loop is performed in order to compensates
not modelling dynamics and external disturbances. In special,
the control is intended to guarantee a good tracking of the
desired distance policy (i.e. tracking or model-matching
problem).

The remainder of the paper is organized as follows. Section
II presents the problem statement. Section III explore the
proposed inter-distance reference model. Section IV presents
some experimental results. And finally in Section V, we
present some conclusions and future directions.

II. PROBLEM STATEMENT

The figure 2 shows the control scheme for which the inter-
distance reference model is designed. The longitudinal control
problem could be understood as a tracking problem of the
inter-distance reference signal dr(t). With this structure, the
controller and the reference model can be defined indepen-
dently. Thereby, the reference model will include the safety
and the comfort constraints, and it could be seen as an exogen
system describing a reference vehicle dynamics. In that way
the controller can be designed to optimally reject other system
disturbances specific to the sensors characteristics as well as
other disturbance input torques such a side wind, road slopes,
and vehicle internal actuator dynamics. We next describe each
of the elements of this control scheme.

A. The inter-distance dynamics - The plant

The automotive longitudinal control is generally composed
by two loops: an internal or inner control loop which compen-
sates the nonlinear vehicle dynamics (acceleration and brake
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Fig. 3. The inter-distance reference model.

systems), and an outer control loop which is responsible for
guaranteeing a good tracking of the desired inter-distance
reference. In this work, we assume that the inner control loop
has already been designed to compensate the internal vehicle
dynamics (acceleration loop), and we are only interested here
in the outer control loop, i.e., the inter-distance control loop.

The inter-distance dynamics can be represented as a double
integrator driven by the difference between the leader vehicle
acceleration ẍl and the follower vehicle acceleration ẍf , i.e.,

d̈ = ẍl − ẍf , (3)

where d is the distance between the two vehicles.

B. The reference model

The inter-distance reference model is taken as an exo-system
describing a virtual vehicle dynamics which is positioned at
a distance dr (the reference distance) from the leader vehicle,
as is illustrated in Figure 3. The reference model dynamics is
given by

d̈r = ˆ̈xl − ẍr
f , (4)

where ˆ̈xl is an estimation of the leader vehicle acceleration
and ẍr

f � ur(dr, ḋr) is a nonlinear function of the inter-
distance reference dr and its time-derivative ḋr. This function
can be designed to meet safety and comfort requirements,
and is related to the safe nominal constant inter-distance,
do, and the minimal constant inter-distance, dc, as it will be
discussed later.

In order to characterize different safety levels, three zones
are defined as follow:

• Green Zone : dr > do ,
where the inter-distance d is larger than the safe nominal
inter-distance do (do is a constant design parameter).
This is a safe operation region,

• Orange Zone : do ≥ dr > dc ,
where do − dc is the necessary inter-distance to avoid
collision if a possible hard braking is produced by the
leader vehicle.

• Red Zone : dr ≤ dc ,
where dc is a constant minimal inter-distance to be
respected. This is a collision-free zone.

TABLE I

SAFETY CONSTRAINTS

Collision avoidance : dr ≥ dc

Maximum velocity : ẋr
f ≤ Vmax

Maximum deceleration : ẍr
f ≥ −Bmax

It is assumed that the velocity and the acceleration of the
leader vehicle can be estimated from suitable sensors2.

On the other hand, the constraints imposed by safety can
be set as bounds on the reference vehicle states and its
time-derivatives. These constraints are summarized in Table
I, where dc, Vmax, Bmax are positive constants. Bounds dc

and Vmax could be imposed by the driver or by the infras-
tructure manager, while Bmax is imposed by the dynamics
characteristics of the vehicle. Nevertheless, these bounds may
be dependent on the other road external factors as well. In this
study, we assume that they are invariant.

C. The reference model-design problem

Introducing d̃�
=d0−dr, as being the inter-distance error with

respect to the (constant) nominal inter-distance magnitude d0.
The dynamics of this error coordinate will be

¨̃
d = ur(d̃,

˙̃
d) − ˆ̈xl. (5)

The model-design problem is then to find a suitable ur =
ur(d̃,

˙̃
d) such that all the solutions of (5), for a given set

of initial conditions (at the moment when orange zone is
reached), are consistent with the constraints indicated in Table
I. To this aim, we search for suitable nonlinear functions of
ur(·). This is investigated in the Section III.

D. The inter-distance control objective

The control objective is for the inter-distance d, described
by the dynamics (3), to track an inter-distance reference signal
dr that satisfies (4). This is illustrated in the Section IV, where
it is employed a simple control feedback to solve the model-
matching problem for a preliminary experimental benchmark.

Not a lot attention is reserved for the feedback design, and
this could be more elaborated in according to each designer.
Thus, the proposed control structure and the new reference
model design/setting represent the main contribution of this
paper.

III. INTER-DISTANCE REFERENCE MODEL.

The inter-distance model-design problem can be studied by
making a parallel with the problem of compliant contacts.
In particular, nonlinear models resulting from the theory of
elasticity and mechanic of the contacts (i.e. Hertz contact
model) are a good source of inspiration.

Take for example the following case which considers two
different laws for ur, i.e.

2Actually, commercial inter-distance sensors give information about the
inter-distance and the relative speed between two cars. Thus, leader speed
and/or acceleration should be estimated from these measurements.
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ur =

{
u1(·) d̃ < 0

u2(d̃,
˙̃
d) d̃ ≥ 0

(6)

where we assume C1 continuity between these two struc-
tures, i.e. ∂u1

∂d̃
|d̃=0 = ∂u2

∂d̃
|d̃=0. The particular proposed struc-

ture for ur allows the equation (5) to be re-interpreted as an
equation describing the physics of a point mass moving in the
free space if d̃ < 0, and in contact with a compliant surface
if d̃ ≥ 0.

In this work we assume that in d̃ < 0 (i.e. into the green
zone), u1 is dictated by the type of mode selected by the driver
(e.g. cruise control or speed regulation). Our interest here is
restricted in the “constrained” zone (the orange zone), hence
the design of u2.

Hertz, for example, has proposed a model of the form u2 =
−kd̃n, ∀d̃ ≥ 0, where n = 1, 2 · · · accounts for contact surface
topology. However, the model has the major inconvenient of
being non-dissipative, producing a oscillatory effect that may
induce a non feasible negative vehicle velocity. To cope with
this problem, Hunt and Crosseley [8], and then Marhefka and
Orin [9] have introduced a non-linear damper/spring model
of the general form u2 = −c|d̃|n ˙̃

d − kd̃n, ∀d̃ ≥ 0. Then,
the forces are proportional to the penetration of the object
into the surface. One of the advantages of this model is that
in connection with (5), it is possible to compute the integral
curves associated to the autonomous nonlinear differential
equation of the form:

¨̃
d + c|d̃|n ˙̃

d + kd̃n = 0, ∀n.

However, with k �= 0, this equation has a“bouncing” effect;
solution of this equation may produce motion with velocity
reversal. It is clear that in our framework, we may want that
the vehicle velocity behaves monotonically in the forward
direction. For this, we can remove the storage-term in the
damper/spring model discusses previously and let u2 be only
defined by a dissipation term as (for n = 1):

u2 = −c|d̃| ˙̃
d, ∀d̃ ≥ 0, (7)

which leads to the following equation

¨̃
d = −c|d̃| ˙̃

d − ˆ̈xl. (8)

Due to the necessity of eliminating the excess in kinetic
energy that the vehicle has once it enters in the orange
zone, it is then natural to only use a dissipation term to
avoid collisions. Note that the goal of this structure is not
to regulate back the reference vehicle to d̃ = 0, but to stop
the vehicle before it reaches the critical distance dc, while
respecting the imposed comfort constraints as it is illustrated
in figure 4.

Consider for simplicity t = 0 the time at which the orange
zone is reached. Let Ωorange

0 be defined as

Ωorange
0 =

{
ẋr

f (0), d̃(0) : ẋr
f (0) = Vmax, d̃(0) = 0

}
,

the set of all admissible initial state values at the crossing
point d̃ = 0. Now, the problem is to find a value for c and for
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Fig. 4. Inter-distance produced by a human driver vs. that produced by
the proposed model. With dc = 5m, d0 = 22m, Bmax = 10m/s2 and
Vmax = 15m/s.

the constant d0 (the design parameters of (8)), such that the
restrictions in Table I will be satisfied for all possible solutions
of (8) starting in Ωorange

0 .

A. Setting the Model

Note that Equation (8) can be solved analytically, i.e.,

˙̃
d(t) = − c

2
d̃(t)2 − ˆ̇xl(t) + β, (9)

with β � ẋr
f (0)+ c

2 d̃2(0). Note that by definition d̃(0) = 0,
then β = ẋr

f (0). Upon substitution of the relation ẋr
f (t) =

˙̃
d(t)+ ˆ̇xl(t) in (9) one can obtain an explicit relation between
the reference vehicle velocity and the “penetration” distance,
i.e.

ẋr
f (t) = − c

2
d̃(t)2 + β. (10)

From this expression, we can find a c such that for all β =
ẋr

f (0) = Vmax, the critical distance dc is not attained. From:

d̃(t) =

√
2(β − ẋr

f (t))
c

, (11)

the maximum penetration distance d̃max can be computed as

d̃max =
√

2β̄
c ; (β̄�

= max∀t{β − ẋr
f (t)} = β). Making d̃max ≤

do − dc, (do − dc is the orange zone length), we have,

d̃(t) ≤
√

2β

c
≤ do − dc, (12)

which imposes us a first constraint, C1, on the possible
values of c, i.e.

C1 : c ≥ 2β

(do − dc)2
. (13)

Figure 5 displays the integral curves (10) for different initial
reference vehicle velocities. The constant c is computed to
ensure that the vehicle inter-distance dr is larger than dc for
different initial velocities ẋr

f (0) and d̃(0) = 0.
By taking the time-derivatives on (10), and using (9), we

get
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Fig. 5. Speed vs. Penetration Distance for different initial velocities. (c =
0.0125, do = 75m and dc = 5m).

ẍr
f = −c|d̃|[− c

2
d̃2 + β − ẋl(t)], (14)

proceeding in the same way as before, and introducing the
deceleration constraint, ẍr

f (t) ≥ −Bmax we have:

ẍr
f (t) ≥ −2

3
β

√
2cβ

3
≥ −Bmax. (15)

Appendix I presents more details on the derivation of (15).

Figure 6 shows solutions of (8) by different values of c.
Notice for example that high values of c yield high values
for deceleration and jerk magnitudes, while small values for
c are required to get large stoping distances. This relation
demonstrates clearly the tradeoff between safety (that require
large c), and comfort (that associate small c).

Relation (15) yields an upper bound for c, i.e.

C2 : c ≤ (
27
8

)
B2

max

β3
. (16)

The problem can thus be formulated as finding a value of
c , subject to the set of constraints C1 and C2. Therefore, a
sufficient condition so that c exists is that C1 and C2 holds,
i.e.

2β

(do − dc)2
≤ (

27
8

)
B2

max

β3
, (17)

which together with β = Vmax, implies that the design
parameter do should meet the following relation

do ≥
√(

16
27

)
V 2

max

Bmax
+ dc, (18)

If do is selected according by taking the smaller value
compiling with (18), i.e.

do =

√(
16
27

)
V 2

max

Bmax
+ dc, (19)

then we can calculate c from C2, as:
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Fig. 6. Speed, Acceleration and Jerk vs. Penetration Distance for the same
initial conditions (ẋr

f (0) = 20m/s; d̃(0) = 0m), and different c values.

c =
27B2

max

8V 3
max

. (20)

Note that the design parameters could be obtained from (18)
and (20) as functions of the imposed bounds dc, Vmax and
Bmax. If (18) and (20) hold, the reference inter-distance model
provides an inter-distance reference dr that avoids collision
respecting the maximum braking capacity. All this is true for
all initial conditions that satisfy ẋr

f (0)+ c
2 d̃2(0) = β = Vmax.

Notice also that the equation (18) gives an important
relationship between the maximal vehicle velocity and the
safe inter-distance do for a given braking capacity Bmax.
In fact, equation (18) corresponds to the braking distance
dictated by the model. This braking distance is quite similar
to the Newtonian braking distance, equation (1) (i.e. both are
quadratic functions of the speed). The figure 7 illustrates this
relationship.
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B. The comfort behavior

A comfortable braking is here understood as the ability to
decelerate with “low” jerk while respecting the safe stopping
distance. One of the principal advantages of the proposed
reference model, concerns the possibility of evaluate the
expected comfort behavior using the solutions of the equation
(9). Taking the times-derivatives of (9) in function of d̃, we
have the reference acceleration given by

ẍr
f = −c|d̃|

[
− c

2
d̃2 + β − ˆ̇xl(t)

]
, (21)

and the reference jerk given by

...
x

r
f = − c

[
d̃

(
−cd̃

{
− c

2
d̃2 + β − ˆ̇xl(t)

}
− ˆ̈xl(t)

)
+

(
− c

2
d̃2 + β − ˆ̇xl(t)

)2
]

.
(22)

Thus, assuming that the estimated leader vehicle accelera-
tion/deceleration is bounded as:

−γ ≤ ˆ̈xl(t) ≤ α, (23)

where γ and α are positive constants, with γ >> α, we can
re-write (21) and (22) as

ẍr
f (t) ≤ α, (24)

|...xr
f (t)| ≤ max(cβ2,

√
2cβγ). (25)

These equations (see appendix I and II for derivations), sug-
gest that the maximum positive reference vehicle acceleration
and the jerk depend of the chosen design parameter c and the
constant β (β = ẋr

f (0)), but also depend of the maximum
leader vehicle acceleration α and deceleration γ.

Taking, for example, the parameter c as it is calculated
in (20) we can, under assumption (23), bound the reference
vehicle jerk as:

|...xr
f (t)| ≤ max(

27
8

B2
max

Vmax
, 2.6

Bmax

Vmax
γ). (26)

The vehicle safety is then guarantee for all operation con-
ditions, while the vehicle comfort level is adapted to each
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Fig. 8. Safety distance do and maximum jerk w.r.t. the parameter n.

scenario according to the acceleration/deceleration capabilities
of the leader vehicle.

C. Influence of different values of n

We have, until now, analyzed the model with n = 1 in
(8). Proceeding in the same way, as in Section III-A, and
considering different values of the parameter n, we can obtain
a more general expression of (18):

do ≥
[
nn(n + 1)2(n+1)

(2n + 1)2n+1

] 1
n+1 V 2

max

Bmax
+ dc. (27)

Similarly, if condition (27) is satisfied, then there exists c
such that the maximum braking value Bmax is respected and
the inter-distance is always larger or equal than minimal inter-
distance dc, (for all initial speed smaller or equal to Vmax),
i.e. the parameter c could be calculated as follow:

c =
1
nn

[
2n + 1
n + 1

]2n+1
Bn+1

max

β2n+1
. (28)

In addition, (27) suggests the existence of a minimum value
for do as a function of n. Figure 8 illustrates this. Although
reducing n gives a smaller safe distance do, the comfort may
be affected. Figure 8 also shows a numerical plot of the
maximum possible jerk values with respect to n, assuming
max∀t{ẋr

f (0) − ˆ̇xl(t)} = Vmax, and −γ ≤ ˆ̈xl(t) ≤ α.

...
x

r
f = −cd̃n[ c2d̃2n+1

n+1 − cd̃n(ẋr
f (0) − ˆ̇xl) − ˆ̈xl]

−cnd̃n−1[− cd̃n+1

n+1 + ẋr
f (0) − ˆ̇xl]2.

(29)

Note that the maximum possible jerk explose to the infinity
values for n < 1, and it decrease for larger values of n.
However the distance do (that determines the length of the
orange zone), becomes larger for larger n. That means that
we can set the model in order to obtain more comfort, tourist
mode , requiring more distances, or we can set the model for
smaller safe distances, sporting mode, demanding more jerk.

In the rest of the paper we continuous to use n = 1, which
concerns a raisonnable value of inter-distance with bounded
jerk.
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D. Model simulations

1) Case 1: Simulations without noise: To illustrate the be-
havior of the proposed inter-distance model, we have designed
a test profile including cruise control, hard-stop, and stop-and-
go scenarios. The simulations have been done considering
Vmax = 30m/s, Bmax = 10m/s2, and dc = 5m. These
values are used to compute d0, and c as shown in previous
section. This results in d0 = 75m and c = 0.0125. Initial
conditions are xr

1(0) = 0m, x2(0) = 85m, ẋr
1(0) = 30m/s,

and ẋl(0) = 20m/s. The dotted lines in the figure 9 shows
the curves produced by the simulated leader vehicle.

When the reference vehicle comes near to the leader vehicle,
the velocity is adapted with comfortable deceleration and the
reference vehicle is positioned to a safe distance. Then, at
t = 25s the leader vehicle is stopped with elevate braking
value (approximately 10m/s2), while the reference vehicle
obtains completed stop before critical distance dc = 5m
with a braking smaller than 6m/s2. Thereafter, the leader
vehicle is accelerated and decelerated (stop-and-go) with usual
acceleration values but elevate jerk; however, the reference
vehicle is maintained to a safe distance, and a bounded jerk
(< 3m/s3).

Figure 9 shown the resulting inter-distance evolution
predicted by the virtual vehicle along the complete test-
profile. As expected, the red zone is never reached while the
acceleration and jerk are keep within the predicted limits.

2) Case 2: Simulations with noise or bias: Here we
simulate the reference model driving by a leader vehicle
acceleration affected by noise or a bias, i.e.

ˆ̈xl = ẍl + ηl, (30)

where ηl could be a zero mean, gaussian noise signal, with
variance equal to 0.1 (Figure 10), or a bias equal to 0.1m/s2

(Figure 11).
The minimal inter-distance and the maximal braking is

always respected as a consequence of assuring the leader dy-
namics hypothesis dictated in Section III-A, i.e. the estimated
leader dynamics (30) is subject to:

0 ≤ ˆ̇xl(t) ≤ Vmax, ∀t. (31)

Figure 10 illustrates the response of the reference model
when it is driven by an noisy leader acceleration. Note that
the reference model always respect the minimal inter-distance
with bounded jerk. Note also that the effect of a noisy
measurement only is observed in the jerk response that
becomes noisy too.

On the other hand, figure 11 illustrates the response of the
reference model when it is driven by a leader acceleration
affected by a constant bias. Notice that the reference inter-
distance response changes a little with respect to the above
case. However, the minimal inter-distance is always respected
with bounded jerk. During braking, the positive jerk becomes
bigger than the above case. Notice too that due to the bias
the maximal inter-distance decrease a little. These aspects
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Fig. 9. Inter-distance, velocities, acceleration and jerk for a given leader
profile.
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Fig. 10. Behavior of the model affected by noise in the leader acceleration
measurement.
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Fig. 11. Behavior of the model affected by a bias in the leader acceleration
measurement.

concern the main disadvantage of the model, which reflects an
important sensibility to the quality of the leader acceleration
measurement. In fact, during implementation we use the leader
velocity measurements instead of the acceleration ones. This
was possible thanks to the integrability property of the model
which permits to calculate the inter-distance reference and the
reference acceleration in terms of the leader speed. This will
be illustrated next in the Section IV-B.1.

IV. EXPERIMENTAL RESULTS

In this Section, we describes some experimental results of
an implemented longitudinal control. The structure of the total
implemented control law is depicted in figure 2. We start this
Section describing the used equipment, then we describes the
implemented longitudinal controller and finally we discuss the
main experimental results both for a stop-and-go scenario and
for a car-following scenario.

A. Equipment description

Within the framework of the ARCOS French program
and in collaboration with the LIVIC3 Laboratory, we have

3LIVIC is a French laboratory about the interaction between driver, vehicle
and infrastructure; see http://www.inrest.fr/ur/livic

(a) (b)

Fig. 12. (a) The LOLA car in the track and (b) its brake pedal.

obtained some preliminary experimental results. The different
algorithms have been integrated on the “LOLA” test car (see
figure 12).

During the test the inter-distance value is computed as
the difference of the absolute position of each vehicle. The
absolute position and the speed are obtained from an odometer
available in each vehicle. The measures are transmitted by
radio-frequency to the central computer-station located into the
follower car. These values are both used for control (reference
model and control feedback), and for recording in real-time.
Leader and follower vehicle accelerations are obtained from
their gyros (inertial sensors) with the purpose of appreciate its
behavior.

B. Implemented longitudinal controller

The automotive longitudinal control is generally composed
by two loops: an internal or inner control loop which compen-
sates the nonlinear vehicle dynamics (acceleration and brake
systems), and an outer control loop which is responsible for
guaranteeing a good tracking of the desired reference inter-
distance (given by the reference model).

The inner control loop, i.e. the throtle/brake control loop,
is a non-trivial control problem. The difficulty is due to
the complexity, and lack of symmetry of the throttle and
brake sub-systems that control the vehicle acceleration and
deceleration. In addition, the vehicle dynamics is highly non
linear and behaves differently than our idealized point mass.

This important topic has been tackled elsewhere (the inter-
ested readers can be refereed to [3] and [13] ). In this paper,
we assume a perfect inner controller performance, yielding

ẍf � u, (32)

where u stands for the outer controller output signal. Figure
13 illustrates an actuator test (i.e. the inner control loop) in
the LOLA car for an arbitrary reference acceleration. Thus,
we can accept the above assumption, equation (32) in the rest
of the section.

In this work we are only interested in the design of an outer
control loop. Here the outer controller is composed for both
the reference model dynamics and an additional regulation
feedback. The latter will be responsible to guarantee a
compensation of non-modelled and neglected dynamics in
assumption (32). Next, we describe briefly every element of
the implemented longitudinal control.
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Fig. 13. An actuator test (inner control loop) in the LOLA car.

1) The reference model - A feedforward term: The refer-
ence model acts as a feedforward term into the longitudinal
control law. This control action is described by the following
nominal inter-distance dynamics given by equation (9). In
terms of dr we have:

ḋr =
c

2
(do − dr)2 + ˆ̇xl − β, (33)

where β = Vmax. Notice that we have an input, ˆ̇xl, and two
outputs ur and dr. The output ur is obtained from

ur = c|do − dr|ḋr. (34)

The parameters c and do are calculated from (20) and (19)
respectively. The model parameters are summarized in Table
II. The initial condition dr(0) is calculated as dr(0) = d̂(0),
where d̂(0) stands for the initial inter-distance estimation or
measurement.

Notice that this part of the control uses directly the
solution of (9) instead of (8) itself. Thanks of this property
(integrability of the model), the input required to drive the
reference model will be the estimated leader velocity instead
of the estimated leader acceleration. This aspect is well
appreciated during the control implementation due to the fact
that the leader velocity estimation is, in general, more easy
to estimate, and often presents better signal-noise ratio.

2) Control feedback - A model matching: Take the inter-
distance dynamics (3), i.e.

d̈ = ẍl − ẍf . (35)

Assuming that the follower vehicle acceleration (32) could
be described as follow:

ẍf = u + ηu, (36)

where ηu stands for an inner control loop inaccuracy.
And defining d̃e

�
=dr − d as the tracking error signal, with

dr subject to (33) and d subject to (35). Then, the problem
is to design a control feedback u that minimizes the tracking
error d̃e. During experiments, the chosen control structure has
the following form:

u = ur − H(s)
[
dr − d̂

]
, (37)

where ur is given by (34), and H(s) corresponds to a
linear feedback operator.

Substituting (35) in (37) and using (4) we have:

d̈ = ẍl − ¨̂xl + d̈r + H(s)(d̃e − ηd(t)) − ηu, (38)

where d̂ = d + ηd(t), and ¨̂xl = ẍl + ηy(t). This yields the
following tracking error dynamics

¨̃
de + H(s)d̃e = ηy(t) + H(s)ηd(t) + ηu, (39)

with ηd, and ηy being the measurement noise associated
to their respectively measures. We can re-write (39) in its
equivalent Laplace representation as:

d̃e =
1

s2 + H(s)
(ηy + ηu) +

H(s)
s2 + H(s)

ηd. (40)

This means that increasing accuracy in signal d̂, we can
effectively compensate both the leader estimation uncertainties
ηy and the inner control loop inaccuracy ηu for increasing the
H(s) gain. Hence, we could chose H(s) to account for the
specific frequency properties of ηd, and ηy .

Note also that the term H(s) is taken here as a linear
operator of the measured tracking error (dr − d̂). However,
this feedback compensation could be obtained from more
elaborated control designs, as for example H∞/H2 control,
optimal control, state feedback, etc.

C. Results discussion

1) Case 1: A Stop-and-go scenario: The Figures 14a, 14b,
14c and 14d, correspond to the inter-distances, velocities,
acceleration/deceleration, and jerks respectively during a stop-
and-go scenario. Notice that we have different initial con-
ditions (i.e. the reference inter-distance and the actual inter-
distance at t = 40s). However the controller was charged of
the attractiveness of the system states to the reference model
states.

During the experimental tests we have used a Proportional-
Derivative (PD) controller as the function H(s). The Table III
summarizes the PD-gains which give goods results (models of
sensors noise was not available, so, a trial and error PD-gains
adjustment was used). Due to the elevated noise in the inter-
distance measurement, the controller bandwidth (dictated from
the PD-gains) has been quite limited, and then, the tracking
error becomes appreciable.

The reference model was adjusted using the parameters
values depicted in Table II. The maximal deceleration was
decreased to 7m/s2 in order to compensates the low band-
width of the control feedback (i.e. smaller deceleration and
jerk magnitudes require less controller bandwidth).

Notice that the jerk is so smaller and consequently better
in terms of comfort. The jerk is not obtained directly from
measurements, actually the jerk is calculated from derivation
of acceleration measurements with suitable filtering. In fact,
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Fig. 14. Inter-distance, velocities, acceleration and jerk from experiment. A
stop-and-go scenario.

TABLE II

REFERENCE MODEL PARAMETERS USED DURING EXPERIMENTS

Sample time Ts : 0.1 s

Maximal velocity Vmax : 30 m/s

Max. braking capacity Bmax : 7 m/s2

Minimal distance dc : 5 m

Max. distance d0 : 104 m

Parameter c : 0.006125

the Figure 14d is depicted in order to illustrate the magnitude
of the obtained comfort.

2) Case 2: A Car-following with Hard stop scenario:
The figures 15a, 15b, 15c and 15d, correspond to the inter-
distances, velocities, acceleration/deceleration, and jerks re-
spectively, during a car-following with hard stop scenario.

During car-following (i.e. between 25s and 57s), the inter-
distance tracking error behavior is very acceptable, with ac-
celerations and jerks so smaller. However, during the hard
stop scenario (after 57s), the leader speed decreases abruptly
with a deceleration near to 8m/s2. The speeds were almost
20m/s just before to start the braking maneuver. The follower
vehicle makes use of its maximal braking capacity, exceeding
the maximal braking performed by the model. This behavior
is attributed to a large time delay in the inner control loop
(about 300ms inherent to the used brake actuator/controller),
which becomes appreciable during a hard stop scenario. As
a consequence of this time delay, a large deceleration and
an elevated positive jerk are reached. However, this jerk
magnitude is raisonnable according to the scenario. In fact, this
scenario is quite extreme, permitting to test the effectiveness of
the proposed approach, specially the fact to avoid a collision.
In addition, this positive jerk occurs near to zero speed and
therefore the related uncomfort is not so perceptible in practice
(see for example [7]).

V. CONCLUSION

In this paper we have presented a novel reference model-
based control approach for automotive longitudinal control.

TABLE III

CONTROL FEEDBACK PARAMETERS

Proportional action gain Kp : 0.3

Derivative action gain Kd : 1.0
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Fig. 15. Inter-distance, velocities, acceleration and jerk from experiment. A
car-following scenario.

The proposed structure combines an exogen reference model
with an additional control loop. The former is charged of
verify some safety and comfort constraints, while the latter
is charged of the model-matching between the model and
the actual system, assuring a good tracking of the desired
reference inter-distance.

The model has few parameters that can be also set in
accord to other external factors, such as the road conditions
and the traffic load. In this work, the main assumption
concern the fact that the parameters model are invariant. As
a future work, adaptability of the model with respect to the
external information should be studied.

The proposed model is described by a nonlinear set of
equations that are driven by the vehicle leader acceleration.
This last aspect corresponds to the main disadvantage of
the model. In fact the model requires a good estimation of
the leader acceleration that could be relatively difficult to
obtain directly. Nevertheless, thanks of the integrability of
the model, this problem could be solved by expressing the
reference inter-distance and the reference acceleration in
terms of the leader speed.

Although this approach seems quite similar to some early
works, for example [6], [4], and [20], where an impedance
control is proposed, the distance policy presented in this
paper is obtained from an exogen dynamical motion equation,
instead of non-exogen stationary ones based on the classi-
cal safe distance, equation(1). This fact allows to calculated
explicitly the bounds of the model solutions which are ob-
tained through suitable integral curves. Thus, the proposed
reference model does not suffer the problems discussed in
Section I-A. In addition, the proposed distance policy gives
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both the reference inter-distance and the necessary accelera-
tion/deceleration, leaving an additional control loop to com-
pensate other no modelling dynamics of the car and external
perturbations. The design of the control is independent of the
reference model design. Therefore, more elaborated control
strategies could be used for this task.

Contrary to the other methods, the proposed control does
not divise each scenario, and does not need to build different
references and controllers for each one. The proposed model
verify safety and comfort for all the range of speed, and in
this way the proposed longitudinal control could be useful
into highways and suburban areas, in particular in stop-and-
go scenarios.

The string stability problem is not analyzed here. This
problem together with the acceptability of this approach in
commercial cars could be the object of future works.

APPENDIX I
DERIVATION OF THE MAXIMUM REFERENCE

ACCELERATION AND BRAKING

Take the equation describing the dynamics of a reference
vehicle, equation (14). The reference vehicle acceleration
could be described in terms of d̃ as follow:

ẍr
f =

c2

2
d̃3 − c(β − ˆ̇xl)d̃, (41)

where the constant β is defined in terms of the reference-
model initial conditions , i.e. β � ẋr

f (0) + c
2 d̃2(0). See

Section III.

The maximum penetration distance, denoted as d̃max �
max∀t{d̃(t)}, have been calculated from equation (12) as
follow:

d̃max �
√

2β

c
, (42)

for all 0 ≤ ẋr
f (t) ≤ β, ∀t.

In addition, from equations (11) and (14) we can obtain the
following boundary conditions:

ẍr
f = 0, ẋr

f = β at d̃ = 0 (43)

ẍr
f = 0, ẋr

f = 0 at d̃ = d̃max. (44)

Figure 16 illustrates the reference model braking and/or
acceleration for ˆ̇xl = 0.

A. Maximum Braking

Taking the equations (41)-(44), and based in the figure 16,
we have that

min
t
{ẍr

f (t)} ≡ min
d̃

{ẍr
f (d̃)|ẋl=0}, (45)

i.e. the maximum value of the reference braking could be
calculate from
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Fig. 16. The reference acceleration decomposed in two different functions,
where max{c(β − ˆ̇xl)d̃} = cβd̃.

∂ẍr
f

∂d̃
= 0, for ẋl = 0, (46)

that is

∂ẍr
f

∂d̃
=

c2

2
(d̃∗)3 − cβd̃∗ = 0. (47)

Where the index “∗” stands for an extremal of the function
(41). Solving (47) we obtain

d̃∗ =

√
2β

3c
(48)

which verifies
∂2ẍr

f

∂d̃2 |d̃=d̃∗ = 3c2d̃∗ > 0, i.e. d̃∗ minimizes
the function (41), and the maximum braking could be calcu-
lated as

min{ẍr
f (t)} = −2

3
β

√
2cβ

3
, ∀t (49)

or, in other words,

ẍr
f (t) ≥ −2

3
β

√
2cβ

3
, ∀t (50)

Notice that the equation (50) determines the maximum
value of the reference vehicle braking. This value depends of
both the parameter c and the constant β. Remember that β is
calculated from the model initial conditions.

B. Maximum Acceleration

Proceeding in the same way that in Section I-A, we can
obtain a maximal bound of the reference positive acceleration.
That is

ẍr
f (t) ≤ c2

2
d̃3

max =
c2

2

(
2β

c

) 3
2

= (2cβ3)
1
2 , (51)

at d̃ = d̃max and assuming that ˆ̇xl instantaneously reaches
the maximal value ˆ̇xl = β, i.e. assuming infinite leader
acceleration, and then −c(β− ˆ̇xl)d̃ = 0. Notice from the figure
16, that this bound could be so large, and then so conservative.
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Another way to calculate the positive reference acceleration
could be taking into account a bound in the estimated leader
acceleration, that is, assuming that:

ˆ̈xl(t) ≤ α. (52)

Using the above assumption, we will calculate d
dt ẍ

r
f (t) = 0,

i.e.

d

dt
ẍr

f (t) = −c( ˙̃
d∗)2 − cd̃∗(−cd̃∗ ˙̃

d∗ − ˆ̈xl(t)) = 0 (53)

Notice that into this equation it appears explicitly the leader
vehicle acceleration ˆ̈xl(t). Then, the following equation gives
a condition for existence of an extremal of ẍr

f (t) as a function
of ˆ̈xl(t). So, after simplifications, we have

−cd̃∗ ˙̃
d∗ = ˆ̈xl(t) − ( ˙̃

d∗)2

d̃∗
; ∀d̃∗ > 0 (54)

Hence, substituting ẍr∗
f (t) = −cd̃∗ ˙̃

d∗ (by definition, see
equation 7), in the above equation, we have

ẍr∗
f (t) = ˆ̈xl(t) − ( ˙̃

d∗)2

d̃∗
≤ ˆ̈xl(t); ∀d̃∗ > 0 (55)

This is true for any ˙̃
d∗ and any d̃∗ > 0. Thus, from (55)

and taking the assumption described by (52), the maximal
reference acceleration is bounded as follow:

ẍr
f (t) ≤ α (56)

Notice that the maximum value of the reference vehicle
acceleration depends of the maximum leader vehicle
acceleration α.

APPENDIX II
DERIVATION OF THE MAXIMUM REFERENCE JERK

Take the equation (53) which describes the reference vehicle
jerk. The jerk could be expressed in terms of d̃, as follow:

...
x

r
f = 2c2d̃2(β − ˆ̇xl) − 3

4
c3d̃4 − c(β − ˆ̇xl)2 + cd̃ˆ̈xl (57)

Take the right hand side of the above equation. Notice that
the first term is always positive, the second and the third one
are always negative, while the last one depends of the sign of
the leader vehicle acceleration.

Proceeding similarly as in Appendix I, we first separate the
equation (58) in two different functions, that is:

...
x

r
f = J(d̃) + cd̃ˆ̈xl (58)

where J(d̃) � 2c2d̃2(β − ˆ̇xl) − 3
4c3d̃4 − c(β − ˆ̇xl)2.

So, a simple way to calculate the maximum values of jerk
is described as follow: First we calculate the extremals of the
nonlinear function J(d̃). Then, we calculate the maximum
values (positive and/or negative) of the linear term cd̃ˆ̈xl, and
finally, we add this value to the previous calculated extremals
of J(d̃). This procedure gives a bound of the total function

...
x

r
f .

Thus, the extremals of J(d̃) can be calculated from

∂J(d̃)
∂d̃

= 4c2d̃∗(β − ˆ̇xl) − 3c3d̃∗3 = 0. (59)

The above equation has two solutions:

d̃∗ = 0 ; d̃∗ =

√
4
3

(β − ˆ̇xl)
c

. (60)

Therefore, we have two extremals to be taken into account:

J(d̃∗)|d̃∗=0 = −c(β − ˆ̇xl)2

J(d̃∗)|
d̃∗=

√
β−ˆ̇xl

c

=
1
3
c(β − ˆ̇xl)2

On the other hand, assuming −γ ≤ ˆ̈xl ≤ α, ∀t, we have

−cd̃maxγ ≤ cd̃ˆ̈xl ≤ cd̃maxα (61)

Therefore, assuming
√

8β5

9c >> γ >> α, (i.e. negative jerk
always greater than positive one), the maximum jerk will be
bounded as follow:

|...xr
f (t)| = max{cβ2, cd̃maxγ} (62)

In others terms, using (42):

|...xr
f (t)| = max{cβ2,

√
2cβγ} (63)

The maximum value of jerk depends of the parameter c,
the constant β (initial conditions) and also of the maximal
acceleration/deceleration of the estimated leader vehicle γ.
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